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Linear Classification
• Nowadays linear models has become a mature technique for classification problems

• In many large-scale applications (e.g., Ads CTR predictions, document classification),
linear models are effective and efficient

• However, for such scale (may be up to billions or more), training time can still take
hours even through distributed computing is used

• This work aims to speed up the training of large-scale linear classification from the per-
spective of optimization algorithms

Optimization Problem

• We consider the linear classification problem with l instance-label pairs (xi, yi) and
solve the following optimization problem

min
w

f(w),where f(w) ≡ 1

2
wTw + C

l∑
i=1

ξ(yiw
Txi),

where C: regularization parameter, ξ: loss function

• In this work, we mainly consider logistic (LR) loss

ξLR(ywTx) = log
(
1 + exp

(
−ywTx

))
• To find w efficiently, we need to carefully design the optimization algorithm

Newton’s Method
• Newton method is commonly used for large-scale linear classification. It considers the

quadratic approximation at iterate wk to find direction sk

min
s
qk(s) = ∇f(wk)Ts +

1

2
sT∇2f(wk)s (1)

• The direction s can be obtained by solving the linear system

∇2f(wk)s = −∇f(wk) (2)

• However,∇2f(wk) is often too large to be stored

∇2f(wk) ∈ Rn×n, n : number of features

• A Hessian-free approach is therefore needed to deal with such situations

• In linear classification,∇2f(w) has a special structure

∇2f(w) = I + CXTDX

where D is a diagonal matrix and X = [x1, . . . ,xl]
T is the data matrix

• Hessian-vector product can be calculated by

∇2f(w)v = (I + CXTDX)v = v + CXT (D(Xv))

Hessian-free Newton Method and Conjugate Gradient (CG)

• Iterative methods such as conjugate gradient (CG) can solve (2) by a sequence of
matrix-vector products

∇2f(w)d1, ∇2f(w)d2, . . .︸ ︷︷ ︸
#CG steps

Cost of Newton method ∝ total #CG steps

• When solvingAx = b, a smaller condition number cond(A) usually leads to fewer #CG
steps

• Preconditioning can possibly improve the condition number of a linear system

Preconditioned Conjugate Gradient (PCG)

Suppose we want to solve Ax = b.
• PCG finds a preconditioner

M = EET≈A
and transforms

Ax = b

to
(E−1AE−T )(ETx) = E−1b

• If the approximation is good, cond(E−1AE−T ) ≈ 1 and fewer #CG steps are needed

Challenges of Applying PCG

• To solve Ax = b

– Preconditioning generally reduces #CG steps, but not always

– Applying preconditioning incurs extra costs. Fewer #CG steps may not imply less
running time

• New Challenges of PCG in Newton

– We now solve a sequence of linear systems

Newton iteration 1: ∇2f(w1)s = −∇f(w1)

Newton iteration 2: ∇2f(w2)s = −∇f(w2)

...
A preconditioner useful for one linear system may not be for another.

Most past PCG studies focus on one linear system

– Now we don’t explicitly have ∇2f(wk). Many existing preconditioners can not be
applied

Applying PCG to Newton

• We first consider the diagonal preconditioner, which is possible to get even if Hessian is
not formed

M = diag(∇2f(w)) = diag(I + CXTDX) (3)

then we have

Mij =

{
(∇2f(wk))jj = 1 + C

∑
kDkkX

2
ki, if i = j,

0, otherwise.

• Examples of using diagonal preconditioner
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– Preconditioning can be very useful, but not always

– If something goes wrong in one linear system, the whole sequence may be bad

Existing Preconditioner: Sub-sampled Hessian as Preconditioner

• Another idea of approximating the Hessian is by sub-sampling

• If we consider a subset of data X̄ with l̄ instance-label pairs, a sub-sampled Hessian
can be constructed as a reasonable preconditioner

M = I + C
l

l̄
X̄T D̄X̄ ≈ ∇2f(wk)

• The preconditioner M ∈ Rn×n, with the same size as∇2f(wk), is too large to be stored.
? utilize the special structure of M to make the calculation feasible

• However, the extra costs incurred by this preconditioner can sometimes be huge
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Making Preconditioner More Robust

• Our work aims to improve the robustness of preconditioning for the overall procedure

• In Newton method, we solve a series of linear systems

A1x = b1, A2x = b2, . . .

A preconditioner M = EET may work for some linear systems but not others

• Can we slightly change M for better robustness of the overall procedure?

• We hope M̄ = ĒĒT satisfies

cond(Ē−1∇2f(w)Ē−T ) ≈ min{cond(∇2f(w)),cond(E−1∇2f(w)E−T )} (4)

That is, we choose the better between with and without the preconditioner

Our Proposed Methods

• Run in Parallel
A direct way to achieve (4) is by running standard CG and PCG in parallel and choose
the one with fewer CG steps.

M̄ =

{
I, if CG uses less steps,
M, if PCG uses less steps.

• Weighted Avarage
Parallelizaion may not be always possible. We revise the goal to be more modest

κ(Ē−1∇2f(w)Ē−T )< max{κ(∇2f(w)), κ(E−1∇2f(w)E−T )} (5)

That is, we avoid the worse one. We prove

M̄ = αM + (1− α)I, where 0 < α < 1,

satisfies (5).

• If M is the diagonal preconditioner, we have

M̄ = α× diag(Hk) + (1− α)× I

The technique effectively improves the robustness of the diagonal preconditioner
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We show more robustness improvement in the experiments section.

Experiments

• The following preconditioners are considered

– Diag: the diagonal preconditioner

– Parallel: running CG and diagonal preconditioner in parallel

– Mixed: our proposed method with a diagonal preconditioner

– SH-3000: a sub-sampled Hessian preconditioner with l̄ = 3, 000

Our settings are close to real-world scenarios. We measure the preconditioners for
achieving a suitable stopping condition with C ≈ CBest on the following data sets:

Data sets #instances #features CBest

news20 19,996 1,355,191 29

url 2,396,130 3,231,962 2−7

yahookr 460,554 3,052,939 26

kddb 19,264,097 29,890,095 2−1

criteo 45,840,617 1,000,000 2−15

kdd12 149,639,105 54,686,452 2−4

CBest is the best regularization parameter selected by cross-validation

• Robustness improvement
We compare different preconditioners with the ratio

(#PCG steps)/(#CG steps), ratio > 1 indicates PCG is not useful

C = CBest C = 100CBest

Data Diag Parallel Mixed Diag Parallel Mixed
news20 1.61 1.06 0.98 2.38 0.85 0.98
url 1.25 0.86 0.87 1.14 0.50 1.29
yahookr 0.29 0.44 0.67 0.31 0.11 0.16
kddb 0.24 0.25 0.28 0.04 0.03 0.05
kdd12 0.19 0.19 0.31 0.29 0.10 0.38
criteo 0.65 0.68 0.70 0.82 0.37 0.49

The proposed techniques effectively improve the robustness of the diagonal precondi-
tioner. The behavior is not sensitive to the selection of α (details in paper)

• Running time comparison of using different preconditioners
We show the ratio

(PCG running time)/(CG running time), ratio > 1 indicates PCG is not useful

C = CBest C = 100CBest

Data Diag Mixed SH-3000 Diag Mixed SH-3000
news20 1.76 1.13 44.36 2.51 1.15 48.20
url 1.24 0.91 1.16 1.18 1.28 1.28
yahookr 0.35 0.73 1.17 0.33 0.19 2.22
kddb 0.28 0.31 0.41 0.05 0.05 0.42
kdd12 0.15 0.22 0.37 0.29 0.36 1.27
criteo 0.74 0.80 0.43 0.75 0.47 0.55

Preconditioners like SH-3000 may incur extra costs and not useful in terms of running
time. Overall Mixed is the best approach. It is more robust than Diag and is often
much faster than standard CG and SH-3000

Conclusion
• Applying preconditioners on a sequence of linear systems in Hessian-free Newton is

difficult

• We propose methods to improve the robustness

• The implementation is included in LIBLINEAR (https://www.csie.ntu.edu.tw/
~cjlin/liblinear/). Many users are benefiting from this development


