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linear classification

@ Linear classification such as logistic regression is
popular and efficient for some problems (e.g.,
document classification)

@ But training on large-scale (terabyte level) data is
still a time-consuming process
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Speed up linear classification

@ We focus on parallel computing on shared memory
systems in this work

@ Difficulty: Some algorithms such as stochastic
gradient, coordinate descent are sequential because
the next iteration relies on the current one

@ Many works modify serial algorithms to parallel

settings, but proving the convergence may be
difficult
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How to speed up?

@ We aim not to modify the algorithms, but employ
parallel matrix operations

@ The main advantage is that the same method can
be used and the convergence still holds
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@ Matrix-vector multiplications in Newton method for
logistic regression
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Newton method for logistic regression

@ Newton method is a popular optimization method
for logistic regression

@ It is known that at each Newton iteration, the main
computational bottleneck is computing a sequence
of Hessian-vector products

@ For logistic regression, the Hessian-vector product
can be simplified as the following,

V2 f(w)d = d + C- XT(D(Xd)), X is data matrix

@ The main computations are Xd and X7 (DXd)
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Matrix-vector operations generally takes
more than 90% of the training time

Data set #instances  #features ratio
kddb 19,264,097 29,890,095 82.11%
url_combined 2,396,130 3,231,961 94.83%
webspam 350,000 16,609,143 97.95%
rcvl_binary 677,399 47,236 97.88%
covtype_binary 581,012 54 89.20%
epsilon_normalized 400,000 2,000 99.88%
rcvl_multiclass 518,571 47,236 97.04%
covtype_multiclass 581,012 54 89.06%
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Fast matrix-vector multiplications

@ For dense matrices, optimized BLAS can be
significantly faster than a naive implementation

@ However, the data matrix X is usually sparse

e Fortunately, some recent progress has been made for
sparse matrix-vector multiplications (e.g. Bordes
et al., 2009; Martone, 2014)

@ Intel Math Kernel Library (MKL) started supporting
sparse BLAS recently
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Parallel matrix-vector multiplications methods

Outline

@ Parallel matrix-vector multiplications methods
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Proposed OpenMP implementation

In V2f(w) - d product, need to speed up Xd and X" u
@ Assume that X is in a row-oriented sparse format

x{ x!d
X=1]:| andu=Xd=
x] x/d

@ Because rows can be easily accessed, we can
parallelize the [ independent inner products

@ Proper scheduling is needed (since the data matrix
may not be balanced)
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Parallel matrix-vector multiplications methods

OpenMP implementation (Cont'd)

@ For the other matrix-vector multiplication,

u
_ T :
u=X U:[Xl...X/]- P = x4+ U

uj

@ Because matrix X is row-oriented, accessing
columns in X7 is much easier than rows

@ We can use the following loop to calculate X "u
1. fori=1,...,/ do
2: u<— u-+ upx;
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Parallel matrix-vector multiplications methods

Atomic operations

@ However, for parallelization, different threads may
update the same component at the same time

1. fori=1,..../ do in parallel
2 for (x;)s # 0 do
3: Us < Os + ui(x;)s
@ Atomic operation could be used
1: fori=1,...,/ do in parallel
2: for (x;)s # 0 do
3: atomic: Og — s + uj(x;)s
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Parallel matrix-vector multiplications methods

Reduce operations

@ Another method is using temporary arrays
maintained by each thread, and summing up them
in the end

@ That is, store

0P = Z{u;x,- | i run by threadp}

and then

D:E ig
p
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Parallel matrix-vector multiplications methods

Atomic operation has almost no speedup

@ Reduce operations are superior to atomic operations
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@ Subsequently we use the reduce operations
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Parallel matrix-vector multiplications methods

Recursive Sparse Blocks (Martone, 2014)

@ RSB (Recursive Sparse Blocks) is | =3
an effective format for fast parallel —
sparse matrix-vector multiplications =

@ It recursively partitions a matrix to be like the figure

@ Locality of memory references improved, but the
construction time is not negligible
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Parallel matrix-vector multiplications methods

Speedup of Xd: all are excellent
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Parallel matrix-vector multiplications methods

More difficult to speed up X' u
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Parallel matrix-vector multiplications methods

Improvement of OpenMP implementation

e Instead of computing Xd and X (DXd) separately,

we combine them into a single loop

T N DT
X DXd_Zizlx,D,,x,- d

@ Better speedup as memory accesses reduced
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Parallel matrix-vector multiplications methods

Speedup of total training time
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@ Conclusions
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Conclusions

e With appropriate settings, simple implementations
by OpenMP can achieve excellent speedup

@ Based on this research, a multi-core extension of the
popular package LIBLINEAR is available at:
http://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/multicore-liblinear

@ There are already many users. For example, one
user from USC uses this tool to reduce his training
time from over 30 hours to 5 hours
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