Fast Matrix-vector Multiplications for
Large-scale Logistic Regression on
Shared-memory Systems

Wei-Lin

Wei-Lin Chiang
Department of Computer Science
National Taiwan University

oint work W|th Mu-Chu Lee and Chih-Jen Lin

Chiang (National Tai

1/23

N
Outline

@ Introduction

@ Matrix-vector multiplications in Newton method for
logistic regression

@ Parallel matrix-vector multiplications methods

Q@ Conclusions

Wei-Lin Chiang (National Taiwan Univ.) 2/23

QOutline

@ Introduction

Wei-Lin Chiang (National Taiwan Univ.)

3/23

linear classification

@ Linear classification such as logistic regression is
popular and efficient for some problems (e.g.,
document classification)

@ But training on large-scale (terabyte level) data is
still a time-consuming process

Wei-Lin Chiang (National Taiwan Univ.)

4/23

Speed up linear classification

@ We focus on parallel computing on shared memory
systems in this work

@ Difficulty: Some algorithms such as stochastic
gradient, coordinate descent are sequential because
the next iteration relies on the current one

@ Many works modify serial algorithms to parallel

settings, but proving the convergence may be
difficult

Wei-Lin Chiang (National Taiwan Univ.) 5/23

How to speed up?

@ We aim not to modify the algorithms, but employ
parallel matrix operations

@ The main advantage is that the same method can
be used and the convergence still holds

Wei-Lin Chiang (National Taiwan Univ.)

6/23

QOutline

@ Matrix-vector multiplications in Newton method for
logistic regression

Wei-Lin Chiang (National Taiwan Univ.)

7/23

Newton method for logistic regression

@ Newton method is a popular optimization method
for logistic regression

@ It is known that at each Newton iteration, the main
computational bottleneck is computing a sequence
of Hessian-vector products

@ For logistic regression, the Hessian-vector product
can be simplified as the following,

V2 f(w)d = d + C- XT(D(Xd)), X is data matrix

@ The main computations are Xd and X7 (DXd)

8/23

Matrix-vector operations generally takes
more than 90% of the training time

Data set #instances #features ratio
kddb 19,264,097 29,890,095 82.11%
url_combined 2,396,130 3,231,961 94.83%
webspam 350,000 16,609,143 97.95%
rcvl_binary 677,399 47,236 97.88%
covtype_binary 581,012 54 89.20%
epsilon_normalized 400,000 2,000 99.88%
rcvl_multiclass 518,571 47,236 97.04%
covtype_multiclass 581,012 54 89.06%

9/23

Fast matrix-vector multiplications

@ For dense matrices, optimized BLAS can be
significantly faster than a naive implementation

@ However, the data matrix X is usually sparse

e Fortunately, some recent progress has been made for
sparse matrix-vector multiplications (e.g. Bordes
et al., 2009; Martone, 2014)

@ Intel Math Kernel Library (MKL) started supporting
sparse BLAS recently

10/23

Parallel matrix-vector multiplications methods

Outline

@ Parallel matrix-vector multiplications methods

Wei-Lin Chiang (National Taiwan Univ.)

11/23

Proposed OpenMP implementation

In V2f(w) - d product, need to speed up Xd and X" u
@ Assume that X is in a row-oriented sparse format

x{ x!d
X=1]:| andu=Xd=
x] x/d

@ Because rows can be easily accessed, we can
parallelize the [independent inner products

@ Proper scheduling is needed (since the data matrix
may not be balanced)

Wei-Lin Chiang (National Taiwan Univ. 12/23

Parallel matrix-vector multiplications methods

OpenMP implementation (Cont'd)

@ For the other matrix-vector multiplication,

u
_ T :
u=X U:[Xl...X/]- P = x4+ U

uj

@ Because matrix X is row-oriented, accessing
columns in X7 is much easier than rows

@ We can use the following loop to calculate X "u
1. fori=1,...,/ do
2: u<— u-+ upx;

Wei-Lin Chiang (National Taiwan Univ.) 13/23

Parallel matrix-vector multiplications methods

Atomic operations

@ However, for parallelization, different threads may
update the same component at the same time

1. fori=1,..../ do in parallel
2 for (x;)s # 0 do
3: Us < Os + ui(x;)s
@ Atomic operation could be used
1: fori=1,...,/ do in parallel
2: for (x;)s # 0 do
3: atomic: Og — s + uj(x;)s

Wei-Lin Chiang (National Taiwan Univ.) 14 /23

Parallel matrix-vector multiplications methods

Reduce operations

@ Another method is using temporary arrays
maintained by each thread, and summing up them
in the end

@ That is, store

0P = Z{u;x,- | i run by threadp}

and then

D:E ig
p

Wei-Lin Chiang (National Taiwan Univ.) 15/23

Parallel matrix-vector multiplications methods

Atomic operation has almost no speedup

@ Reduce operations are superior to atomic operations

. 5

Jiadeae gl
s 6 POt 1 %3 PR o
Iﬁ‘:j LT § o
S 4 g 82 Ko

K
2 e 1 o
0 :"'* """ e e re T] 0 e kessus chesass mpssssagussans
1 4 6 8 10 12 1 4 6 8 12
threads # threads
rcvl_binary covtype_binary

@ Subsequently we use the reduce operations

16 /23

Wei-Lin Chiang (National Taiwan Univ.)

Parallel matrix-vector multiplications methods

Recursive Sparse Blocks (Martone, 2014)

@ RSB (Recursive Sparse Blocks) is | =3
an effective format for fast parallel —
sparse matrix-vector multiplications =

@ It recursively partitions a matrix to be like the figure

@ Locality of memory references improved, but the
construction time is not negligible

17/23

Wei-Lin Chiang (National Taiwan Univ.)

Parallel matrix-vector multiplications methods

Speedup of Xd: all are excellent

rcvl_binary webspam kddb
8 16
7 7
6| |®-® OpenvP 6|
S5 ‘.lﬂ:;:‘: S5
o, e s,
@ g5 b
23 X 23
R p
2
o
1 ¥ 1
ol . . : . ol . .
i2 4 6 8§ 10 12 i2 4 6 & 10 12
threads # threads
url_combined rcvl_multiclass
12 10,
m-m MKL ".--" -E MKL
10} |- RSB o &-A RSB
@9 Openvp @ OpenMP
a g . a
=] 3 6
el kel
9 6 @
[i
o L4
0n 4 0
) 2
0 T2 4 6 8 10 12 % i3 4 6 & 10 12
threads # threads

S

18/23

Wei-Lin Chiang (National Taiwan Univ.)

Parallel matrix-vector multiplications methods

More difficult to speed up X' u

rcvl_binary webspam kddb

10 16 6,

8 10 12

i 6 s 10 12 % S R

6
threads # threads

url_combined rcvl_multiclass

10 RELTY TIrTE
- VKL s - 1
&-A RSB .
‘-9 Openvp K.g

®

Q
3 6
el
o 9
3* 4
4 &
1 2
ThernaiageenstAT L, A o
0 4 6 s 10 12 iz 4 ¢ & 10 12 ° 46 8§ 10 12
threads # threads # threads

Wei-Lin Chiang (National Taiwan Univ.) 19/23

Parallel matrix-vector multiplications methods

Improvement of OpenMP implementation

e Instead of computing Xd and X (DXd) separately,

we combine them into a single loop

T N DT
X DXd_Zizlx,D,,x,- d

@ Better speedup as memory accesses reduced

1 4
B Combined| e
-
8 -’
% R * Lemett 1
3 6 P
1] S
Q 4 R
) Lo
7 A
B
1 2 10 12

4 6 8
threads

rcvl_binary

Wei-Lin Chiang (National Taiwan Univ.)

8
W-B Combined - 1
7r|m-m Separated i
6/ .
o -
S 5 Lo
° .
4 i e Heeenn P
g e
3 RN o
0 oL
L
z om
1 B
12 10 12

4 6 8
threads

covtype_binary

20/23

Parallel matrix-vector multiplications methods

Speedup of total training time

rcvl_binary webspam kddb
I e 8
. 5
o By o
> O >
S o S 4
9 .. @
g T’ a3
» PSR
. 2
1
T3 7 6 8 10 12 © T 6 8 W 12 912 4 6 8 10 12
threads # threads # threads
url_combined covtype_binary rcvl_multiclass
7 - MKL 7 L MKL
6|4 RSB 6||AA RSB
- OpenMp -6 Openvp 8
5 5
Q o o
54 54 50
(9] () (7]
83 ol a3 2 4
" 2 f wn 2 wn
| ¥ d ER . 2
0 2 4 6 8 10 12 O 12 4 6 8 10 12 913 4 6 8 10
threads # threads # threads

21/23

Wei-Lin Chiang (National Taiwan Univ.)

QOutline

@ Conclusions

Wei-Lin Chiang (National Taiwan Univ.)

22/23

Conclusions

e With appropriate settings, simple implementations
by OpenMP can achieve excellent speedup

@ Based on this research, a multi-core extension of the
popular package LIBLINEAR is available at:
http://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/multicore-liblinear

@ There are already many users. For example, one
user from USC uses this tool to reduce his training
time from over 30 hours to 5 hours

Wei-Lin Chiang (National Taiwan Univ.) 23/23

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/multicore-liblinear
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/multicore-liblinear

	Introduction
	Matrix-vector multiplications in Newton method for logistic regression
	Parallel matrix-vector multiplications methods
	Conclusions

