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Introduction

Linear classification

Linear classification such as logistic regression is
popular and efficient for some problems (e.g.,
document classification)

But training on large-scale (terabyte level) data is
still a time-consuming process
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Introduction

Speed up linear classification

We focus on parallel computing on shared memory
systems in this work

Difficulty: Some algorithms such as stochastic
gradient, coordinate descent are sequential because
the next iteration relies on the current one

Many works modify serial algorithms to parallel
settings, but proving the convergence may be
difficult
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Introduction

How to speed up?

We aim not to modify the algorithms, but employ
parallel matrix operations

The main advantage is that the same method can
be used and the convergence still holds
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Matrix-vector multiplications in Newton method for logistic
regression

Newton method for logistic regression

Newton method is a popular optimization method
for logistic regression

It is known that at each Newton iteration, the main
computational bottleneck is computing a sequence
of Hessian-vector products

For logistic regression, the Hessian-vector product
can be simplified as the following,

∇2f (w)d = d + C · XT (D(Xd)),X is data matrix

The main computations are Xd and XT (DXd)
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Matrix-vector multiplications in Newton method for logistic
regression

Matrix-vector operations generally takes
more than 90% of the training time

Data set #instances #features ratio
kddb 19,264,097 29,890,095 82.11%
url combined 2,396,130 3,231,961 94.83%
webspam 350,000 16,609,143 97.95%
rcv1 binary 677,399 47,236 97.88%
covtype binary 581,012 54 89.20%
epsilon normalized 400,000 2,000 99.88%
rcv1 multiclass 518,571 47,236 97.04%
covtype multiclass 581,012 54 89.06%
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Matrix-vector multiplications in Newton method for logistic
regression

Fast matrix-vector multiplications

For dense matrices, optimized BLAS can be
significantly faster than a naive implementation

However, the data matrix X is usually sparse

Fortunately, some recent progress has been made for
sparse matrix-vector multiplications (e.g. Bordes
et al., 2009; Martone, 2014)

Intel Math Kernel Library (MKL) started supporting
sparse BLAS recently
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Parallel matrix-vector multiplications methods

Proposed OpenMP implementation

In ∇2f (w) · d product, need to speed up Xd and XTu

Assume that X is in a row-oriented sparse format

X =

x
T
1

...

xT
l

 and u = Xd =

x
T
1 d

...

xT
l d


Because rows can be easily accessed, we can
parallelize the l independent inner products

Proper scheduling is needed (since the data matrix
may not be balanced)
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Parallel matrix-vector multiplications methods

OpenMP implementation (Cont’d)

For the other matrix-vector multiplication,

ū = XT
u =

[
x1 . . . x l

]
·

u1...
ul

 = u1x1 + · · ·+ ulx l

Because matrix X is row-oriented, accessing
columns in XT is much easier than rows

We can use the following loop to calculate XTu

1: for i = 1, . . . , l do
2: ū ← ū + uix i
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Parallel matrix-vector multiplications methods

Atomic operations

However, for parallelization, different threads may
update the same component at the same time

1: for i = 1, . . . , l do in parallel
2: for (x i)s 6= 0 do
3: ūs ← ūs + ui(x i)s

Atomic operation could be used

1: for i = 1, . . . , l do in parallel
2: for (x i)s 6= 0 do
3: atomic: ūs ← ūs + ui(x i)s
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Parallel matrix-vector multiplications methods

Reduce operations

Another method is using temporary arrays
maintained by each thread, and summing up them
in the end

That is, store

û
p =

∑
i

{uix i | i run by threadp}

and then
ū =

∑
p

û
p
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Parallel matrix-vector multiplications methods

Atomic operation has almost no speedup

Reduce operations are superior to atomic operations
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Subsequently we use the reduce operations
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Parallel matrix-vector multiplications methods

Recursive Sparse Blocks (Martone, 2014)

RSB (Recursive Sparse Blocks) is
an effective format for fast parallel
sparse matrix-vector multiplications

It recursively partitions a matrix to be like the figure

Locality of memory references improved, but the
construction time is not negligible
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Parallel matrix-vector multiplications methods

Speedup of Xd : all are excellent
rcv1 binary webspam kddb

url combined covtype binary rcv1 multiclass
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Parallel matrix-vector multiplications methods

More difficult to speed up XT
u

rcv1 binary webspam kddb

url combined covtype binary rcv1 multiclass
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Parallel matrix-vector multiplications methods

Improvement of OpenMP implementation

Instead of computing Xd and XT (DXd) separately,
we combine them into a single loop

XTDXd =
∑l

i=1
x iDiix

T
i d

Better speedup as memory accesses reduced
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Parallel matrix-vector multiplications methods

Speedup of total training time
rcv1 binary webspam kddb

url combined covtype binary rcv1 multiclass
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Conclusions

Conclusions

With appropriate settings, simple implementations
by OpenMP can achieve excellent speedup

Based on this research, a multi-core extension of the
popular package LIBLINEAR is available at:
http://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/multicore-liblinear

There are already many users. For example, one
user from USC uses this tool to reduce his training
time from over 30 hours to 5 hours
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