Fast Matrix-vector Multiplications for Large-scale Logistic Regression on Shared-memory Systems

Wei-Lin Chiang Department of Computer Science National Taiwan University

Joint work with Mu-Chu Lee and Chih-Jen Lin 🔮 👁 🕫

Outline

Introduction

- 2 Matrix-vector multiplications in Newton method for logistic regression
- Parallel matrix-vector multiplications methods

4 Conclusions

Outline

Introduction

- 2 Matrix-vector multiplications in Newton method for logistic regression
- Parallel matrix-vector multiplications methods

4 Conclusions

< □ > < 同 > < 回 > < 回 > < 回 >

Linear classification

- Linear classification such as logistic regression is popular and efficient for some problems (e.g., document classification)
- But training on large-scale (terabyte level) data is still a time-consuming process

Speed up linear classification

- We focus on parallel computing on shared memory systems in this work
- Difficulty: Some algorithms such as stochastic gradient, coordinate descent are sequential because the next iteration relies on the current one
- Many works modify serial algorithms to parallel settings, but proving the convergence may be difficult

くロト く伺 ト くきト くきト

How to speed up?

- We aim not to modify the algorithms, but employ parallel matrix operations
- The main advantage is that the same method can be used and the convergence still holds

イロト イヨト イヨト

regression

Outline

Introduction

2 Matrix-vector multiplications in Newton method for logistic regression

Parallel matrix-vector multiplications methods

4 Conclusions

Newton method for logistic regression

- Newton method is a popular optimization method for logistic regression
- It is known that at each Newton iteration, the main computational bottleneck is computing a sequence of Hessian-vector products
- For logistic regression, the Hessian-vector product can be simplified as the following,

$$abla^2 f(oldsymbol{w})oldsymbol{d} = oldsymbol{d} + C \cdot X^T (D(Xoldsymbol{d})), X$$
 is data matrix

• The main computations are Xd and $X^T(DXd)$

Matrix-vector operations generally takes more than 90% of the training time

Data set	#instances	#features	ratio
kddb	19,264,097	29,890,095	82.11%
url_combined	2,396,130	3,231,961	94.83%
webspam	350,000	16,609,143	97.95%
$rcv1_binary$	677,399	47,236	97.88%
covtype_binary	581,012	54	89.20%
$epsilon_normalized$	400,000	2,000	99.88%
rcv1_multiclass	518,571	47,236	97.04%
covtype_multiclass	581,012	54	89.06%

イロト イヨト イヨト イヨト

Fast matrix-vector multiplications

- For dense matrices, optimized BLAS can be significantly faster than a naive implementation
- However, the data matrix X is usually sparse
- Fortunately, some recent progress has been made for sparse matrix-vector multiplications (e.g. Bordes et al., 2009; Martone, 2014)
- Intel Math Kernel Library (MKL) started supporting sparse BLAS recently

Outline

Introduction

- 2 Matrix-vector multiplications in Newton method for logistic regression
- Parallel matrix-vector multiplications methods

4 Conclusions

Proposed OpenMP implementation

In $\nabla^2 f(\boldsymbol{w}) \cdot \boldsymbol{d}$ product, need to speed up $X \boldsymbol{d}$ and $X^T \boldsymbol{u}$

• Assume that X is in a row-oriented sparse format

$$X = \begin{bmatrix} x_1^T \\ \vdots \\ x_l^T \end{bmatrix} \text{ and } \boldsymbol{u} = X\boldsymbol{d} = \begin{bmatrix} x_1^T \boldsymbol{d} \\ \vdots \\ x_l^T \boldsymbol{d} \end{bmatrix}$$

- Because rows can be easily accessed, we can parallelize the *l* independent inner products
- Proper scheduling is needed (since the data matrix may not be balanced)

OpenMP implementation (Cont'd)

• For the other matrix-vector multiplication,

$$\bar{\boldsymbol{u}} = \boldsymbol{X}^{\mathsf{T}} \boldsymbol{u} = \begin{bmatrix} \boldsymbol{x}_1 \dots \boldsymbol{x}_l \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ \vdots \\ u_l \end{bmatrix} = u_1 \boldsymbol{x}_1 + \dots + u_l \boldsymbol{x}_l$$

- Because matrix X is row-oriented, accessing columns in X^T is much easier than rows
- We can use the following loop to calculate $X^T u$

1: for
$$i = 1, ..., I$$
 do

Atomic operations

- However, for parallelization, different threads may update the same component at the same time
 - 1: for i = 1, ..., l do in parallel 2: for $(x_i)_s \neq 0$ do 3: $\overline{u}_s \leftarrow \overline{u}_s + u_i(x_i)_s$
- Atomic operation could be used
 - 1: for i = 1, ..., l do in parallel 2: for $(x_i)_s \neq 0$ do 3: atomic: $\bar{u}_s \leftarrow \bar{u}_s + u_i(x_i)_s$

Reduce operations

- Another method is using temporary arrays maintained by each thread, and summing up them in the end
- That is, store

$$\hat{\boldsymbol{u}}^{p} = \sum_{i} \{u_{i}\boldsymbol{x}_{i} \mid i \text{ run by threadp}\}$$

and then

$$\bar{\pmb{u}} = \sum_{p} \hat{\pmb{u}}^{p}$$

イロト イヨト イヨト イヨト

Atomic operation has almost no speedup

• Reduce operations are superior to atomic operations

Subsequently we use the reduce operations

イロト イ伺ト イヨト イヨト

Recursive Sparse Blocks (Martone, 2014)

• RSB (Recursive Sparse Blocks) is an effective format for fast parallel sparse matrix-vector multiplications

< ロト < 同ト < ヨト < ヨト

- It recursively partitions a matrix to be like the figure
- Locality of memory references improved, but the construction time is not negligible

Speedup of Xd: all are excellent

Parallel matrix-vector multiplications methods

More difficult to speed up $X^T u$

Improvement of OpenMP implementation

 Instead of computing X d and X^T(DX d) separately, we combine them into a single loop

$$X^{\mathsf{T}} D X \boldsymbol{d} = \sum_{i=1}^{l} \boldsymbol{x}_i D_{ii} \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{d}$$

Better speedup as memory accesses reduced

Speedup of total training time

Outline

Introduction

- 2 Matrix-vector multiplications in Newton method for logistic regression
- Parallel matrix-vector multiplications methods

4 Conclusions

イロト イヨト イヨト

Conclusions

- With appropriate settings, simple implementations by OpenMP can achieve excellent speedup
- Based on this research, a multi-core extension of the popular package LIBLINEAR is available at: http://www.csie.ntu.edu.tw/~cjlin/ libsvmtools/multicore-liblinear
- There are already many users. For example, one user from USC uses this tool to reduce his training time from over 30 hours to 5 hours

・ロト ・ 同ト ・ ヨト ・ ヨト