Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Wel-Lin Chiang?, Xuanqing Liuz, Si Si3, Yang Li3, Samy Bengio3, and Cho-Jui Hsieh?33
'National Taiwan University, 2UCLA, 3Google Research

Google Al

Efficient SGD Methods for GCN?

Subsample smaller #neighbors for each node (denoted: r): /\N A

« GraphSAGE (NeurlPS’'17) samples a fixed number of neighbors

« VRGCN (ICML'18) adopts a small r per node + variance reduction ] Tl e dustr o
technique for better estimation

« FastGCN (ICLR'18) fixes r per layer + importance sampling

But several issues still exist:

1. Recursive neighborhood expansion (Low EU)

2. Objective estimation is not as good as before

3. Extra memory requirements (VR technique)

Our Proposed Method: Cluster-GCN

Idea: use graph clustering to capture important local information .
and improves efficiency
« Example: CiteSeer (a citation network with 3327 nodes)

Introduction

 Training large-scale GCN is a challenging problem. Existing
SGD-based methods suffer from either a high computational
cost or a large memory requirement
* Inthis work,
» We propose Cluster-GCN which exploits graph clustering
structure and is suitable for SGD-based training on GCN
» With Cluster-GCN, large (million-scale) and deep GCN
training is possible, leading to SoTA results on public data
sets (e.g., PPI, Reddit)
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Figure 2. Explanation of multiple clusters selection & results

Experiments
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Graph Convolutional Networks

« Ae RVN . adjacency matrix, X e RV*F : feature matrix,
Y € RY: label vector, W € RFtxFi+1; learnable weight matrices,
o(-): activation function
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* In each GCN layer, nodes’ representations are updated through
the formula:
XD = g(AXxOw)
 Neighborhood information is incorporated into each node's
representation, useful for downstream tasks (e.g., node
classification, link prediction)

> Neighbors of cluster nodes keep within the cluster. EU is optimal Time Memory Test F1 score
- / VRGCN | Cluster-GCN VRGCN | Cluster-GCN | VRGCN | Cluster-GCN
% L. AmazonzM (2-layer) 337s 1223s | 7476 MB 2228 MB 89.03 89.00
NLP Robust tra| Ni ng for C'_uster-GCN Amazon2M (3-layer) 1961s 1523s | 11218 MB 2235 MB 90.21 90.21
Target node Amazon2M (4-layer) N/A 2289s OOM 2241 MB N/A 90.41

Unknown

Figure 1. An example of citation networks.

\X/hat s Special iIn GCN?

In standard neural networks (e.g., CNN), loss function can be  Balance label distribution within a batch 2-layer | 3-layer | 4-layer | 5-layer | 6-layer
decomposed as Z | loss(x;,y;) - Recover some missing edges between-cluster Cluster-GCN | 529s | 825s | 109.4s | 137.8s | 157.3s
VRGCN 103.6s | 229.0s | 521.2s | 1054s | 1956s

 However, in GCN, loss on a hode not only depends on itself but
all its neighbors. This brings difficulties when performing SGD
on GCN

Embedding Utilization (EU)

In Figure 1, suppose a 2-layer GCN is used and we focus only the
targeted node’s loss. To obtain its final nhode representation, we

 If applying graph partitioning (e.g., metis) on A and removed 1.0 097

between-cluster edges, the accuracy of GCN remains similar
(even though 207% edges are removed)

Random Partitioning |Graph Partitioning

1 (no partitioning)
100 partitions

72.0
46.1

72.0
71.5 (~20% edges cut)

Cluster-GCN:
» Partition the original graph into several clusters
» Each cluster (subgraph) can be seen as a mini-batch in SGD

Issue: nodes with similar labels tend to be clustered.

Hence the label distribution within a mini-batch could be different
from original data, leading to a biased gradient estimation in SGD!
To alleviate the imbalance issue, we randomly select multiple
clusters as a batch. Two advantages:

Algorithm 1: Cluster GCN

Input: Graph A, feature X, label Y;
Output: Node representation X
1 Partition graph nodes into ¢ clusters Vi, Vs, - - -

METIS;
2 foriter=1,---

9(VC bY

, max_iter do
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Figure 3. x-axis: running time in second, y-axis: validation F1.

Table 8: Comparisons of running time, memory and testing accuracy (F1 score) for Amazon2M.

Comparisons on Deeper GCN

* The running time of VRGCN grows exponentially with #GCN-
layers, while Cluster-GCN grows linearly

* Training deep GCN is difficult: 8-layer GCN on PPI

fails to converge

« We develop a technique “diagonal enhancement”

P,
0.4

XD =g ((A + Adiag(A))X(l)W(l)) .-
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SoTA results through deeper & wider GCN

need all nodes’ embeddings in its 2-hop neighborhood. 3 | Randomly choose g clusters, #y, - - - , tq from Y’ without
+ 10 embeddings used but only get 1 loss (EU: low) replacement; o ] . PPI: 5-layer with 2048 hidden units PPI | Reddit
+ Same situation occurs in SGD on large and sparse graph. Plus + | Form the subgraph G with nodes V' = [V, V4,,---, V4, | . e : : : FastGCN [1] | N/A | 937
| _ _ i | Reddit: 4-layer with 128 hidden units |-~ 57 612 | 954
#neighbors can grow exponentially (neighborhood explosion) and links Ay 7 ; VR_%CN T Tor8 963
with more #GCN-layers 5 Compute g « V[:A,P v (loss on the subgraph Aq; ) ; CaAN 16 93.71 96'35
. . . . ’ ’ 1 1 121 . .
By contrast, if computing all loss_es at one time, 11 embedding used 6 | Conduct Adam update using gradient estimator g ST ‘;’329325 " 636 o I 602 GAT [14] 973 | N/A
and 11 losses calculated (EU: optlmal) 7 Output: {M}L Amazon 334,863 925,872 58 N/A GeniePath [10] | 98.5 N/A
GCN2_1ayer(4,X) = Aa(AXWO)Ww® =1 AmazonzM 2,449,029 61,859,140 47 100 Cluster-GCN | 99.36 | 96.60

 The key is to re-use nodes’ embeddings as many as possible
(e.g., use full-batch)

 But a full-batch gradient descent may be inferior from the
perspective of optimization (e.g., convergence rate)

Conclusions

Table 1. SOTA results from recent papers.

We present a fast and memory efficient GCN training algorithm, Cluster-GCN, which can train on large-scale graphs with over 2 million nodes in
less than an hour. Cluster-GCN also allows deeper and wider GCN, leading to SoTA performance on PPl and Reddit datasets.
TensorFlow implementation available at: https:/ /github.com/google-research/google-research/tree/master/cluster_gcn




