
Comparisons on Deeper GCN
• The running time of VRGCN grows exponentially with #GCN-

layers, while Cluster-GCN grows linearly

• Training deep GCN is difficult: 8-layer GCN on PPI
fails to converge

• We develop a technique “diagonal enhancement”

𝑿(𝒍+𝟏) = 𝝈 𝑨 + 𝝀𝒅𝒊𝒂𝒈 𝑨 𝑿 𝒍 𝑾 𝒍

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks
Wei-Lin Chiang1, Xuanqing Liu2, Si Si3, Yang Li3, Samy Bengio3, and Cho-Jui Hsieh23

1National Taiwan University, 2UCLA, 3Google Research

Introduction
• Training large-scale GCN is a challenging problem. Existing

SGD-based methods suffer from either a high computational
cost or a large memory requirement

• In this work,
 We propose Cluster-GCN which exploits graph clustering

structure and is suitable for SGD-based training on GCN
 With Cluster-GCN, large (million-scale) and deep GCN

training is possible, leading to SoTA results on public data
sets (e.g., PPI, Reddit)

Conclusions
We present a fast and memory efficient GCN training algorithm, Cluster-GCN, which can train on large-scale graphs with over 2 million nodes in
less than an hour. Cluster-GCN also allows deeper and wider GCN, leading to SoTA performance on PPI and Reddit datasets.
TensorFlow implementation available at: https://github.com/google-research/google-research/tree/master/cluster_gcn

What’s Special in GCN?
• In standard neural networks (e.g., CNN), loss function can be

decomposed as σ𝒊=𝟏
𝑵 𝒍𝒐𝒔𝒔(𝒙𝒊, 𝒚𝒊)

• However, in GCN, loss on a node not only depends on itself but
all its neighbors. This brings difficulties when performing SGD
on GCN

Graph Convolutional Networks
• 𝑨 ∈ ℝ𝑵×𝑵 : adjacency matrix, 𝑿 ∈ ℝ𝑵×𝑭 : feature matrix,
𝒀 ∈ ℝ𝑵: label vector, 𝑾(𝒍) ∈ ℝ𝑭𝒍×𝑭𝒍+𝟏: learnable weight matrices,
𝝈 ⋅ : activation function

• In each GCN layer, nodes’ representations are updated through
the formula:

𝑿(𝒍+𝟏) = 𝝈 𝑨𝑿(𝒍)𝑾

• Neighborhood information is incorporated into each node’s
representation, useful for downstream tasks (e.g., node
classification, link prediction)

Figure 1. An example of citation networks. 

Target node
Robust training for Cluster-GCN
Issue: nodes with similar labels tend to be clustered.
Hence the label distribution within a mini-batch could be different
from original data, leading to a biased gradient estimation in SGD!
To alleviate the imbalance issue, we randomly select multiple
clusters as a batch. Two advantages:
• Balance label distribution within a batch
• Recover some missing edges between-cluster

Our Proposed Method: Cluster-GCN
Idea: use graph clustering to capture important local information
and improves efficiency
• Example: CiteSeer (a citation network with 3327 nodes)
• If applying graph partitioning (e.g., metis) on 𝑨 and removed

between-cluster edges, the accuracy of GCN remains similar
(even though 20% edges are removed)

Cluster-GCN:
 Partition the original graph into several clusters
 Each cluster (subgraph) can be seen as a mini-batch in SGD
 Neighbors of cluster nodes keep within the cluster. EU is optimal

CiteSeer Random Partitioning Graph Partitioning
1 (no partitioning) 72.0 72.0
100 partitions 46.1 71.5 (~20% edges cut)

Datasets #Nodes #Edges #Labels #Features
PPI 56,944 818,716 121 50
Reddit 232,965 11,606,919 41 602
Amazon 334,863 925,872 58 N/A
Amazon2M 2,449,029 61,859,140 47 100

Experiments

Embedding Utilization (EU)
In Figure 1, suppose a 2-layer GCN is used and we focus only the
targeted node’s loss. To obtain its final node representation, we
need all nodes’ embeddings in its 2-hop neighborhood.
• 10 embeddings used but only get 1 loss (EU: low)
• Same situation occurs in SGD on large and sparse graph. Plus,

#neighbors can grow exponentially (neighborhood explosion)
with more #GCN-layers

By contrast, if computing all losses at one time, 11 embedding used
and 11 losses calculated (EU: optimal)

𝑮𝑪𝑵𝟐−𝒍𝒂𝒚𝒆𝒓 𝑨,𝑿 = 𝑨𝝈 𝑨𝑿𝑾 𝟎 𝑾(𝟏)

• The key is to re-use nodes’ embeddings as many as possible
(e.g., use full-batch)

• But a full-batch gradient descent may be inferior from the
perspective of optimization (e.g., convergence rate)

Figure 2. Explanation of multiple clusters selection & results 

Figure 3. x-axis: running time in second, y-axis: validation F1.

PPI (3 layers)

PPI (4 layers)

Reddit (3 layers)

Reddit (4 layers)

Amazon (3 layers)

Amazon (4 layers)

Efficient SGD Methods for GCN?
Subsample smaller #neighbors for each node (denoted: 𝒓):
• GraphSAGE (NeurIPS’17) samples a fixed number of neighbors
• VRGCN (ICML’18) adopts a small 𝒓 per node + variance reduction

technique for better estimation
• FastGCN (ICLR’18) fixes 𝒓 per layer + importance sampling
But several issues still exist:
1. Recursive neighborhood expansion (low EU)
2. Objective estimation is not as good as before
3. Extra memory requirements (VR technique)

SoTA results through deeper & wider GCN

• PPI: 5-layer with 2048 hidden units
• Reddit: 4-layer with 128 hidden units

Table 1. SoTA results from recent papers.


