
Cluster-GCN: An Efficient Algorithm for
Training Deep and Large Graph
Convolutional Networks
Wei-Lin Chiang1, Xuanqing Liu2, Si Si3, Yang Li3, Samy Bengio3, Cho-Jui Hsieh23

1National Taiwan University, 2UCLA, 3Google Research

2

Graph Convolutional Networks

• GCN has been successfully applied to many
graph-based applications

• For example, social networks, knowledge
graphs and biological networks

• However, training a large-scale GCN
remains challenging

https://medium.com/@sderymail/challenges-of-knowledge-graph-part-1-d9ffe9e35214
http://googlesystem.blogspot.com/2007/05/world-wide-web-as-seen-by-google.html

3

Background of GCN

CV

NLP

Node’s featureUnlabeled

Let’s start with an example of citation networks

• Node: paper, Edge: citation, Label: category

• Goal: predict the unlabeled ones (grey nodes)

4

Notations

Adjacency matrix: 𝑨
(𝑁 − 𝑏𝑦 − 𝑁 matrix)

0 1 ⋯ 0 1
1 0 1 1 1
⋮ 1 ⋱ 0 ⋮
0 1 0 0 0
1 1 ⋯ 0 0

Feature matrix: 𝑿
(𝑁 − 𝑏𝑦 − F matrix)

0 0.3 ⋯ 0.8 0.9
0.4 0 0.6 0.1 0
⋮ 0.2 ⋱ 0 ⋮
0 0.5 0 0 0
0.3 0.2 ⋯ 0 0

Label vector: 𝒀 0 1 ⋯ 0 1 𝑇

5

A GCN Update

• In each GCN layer, node’s representation is
updated through the formula:

𝑿(𝒍+𝟏) = 𝝈(𝑨𝑿 𝒍 𝑾(𝒍))

• The formula incorporates neighborhood
information into new representations

Target node

𝜎(⋅)
0 0.2 ⋯ 0.8 0.9
0.8 0.3 0.6 0.1 0.2
⋮ 0.2 ⋱ 0 ⋮
0 0.5 0 0.1 0
0.3 0.2 ⋯ 0 0

learnable weighted matrix:𝑾

new representation: 𝒛

Operation like
averaging

6

Better Representations

• After GCN update, we hope to obtain better node
representations aware of local neighborhoods

• The representations are useful for downstream
tasks

7

But Training GCN is not trivial

• In standard neural networks (e.g., CNN),
loss function can be decomposed as
σ𝑖=0
𝑁 𝒍𝒐𝒔𝒔(𝑥𝑖 , 𝑦𝑖)

• However, in GCN, loss on a node not only
depends on itself but all its neighbors

• This dependency brings difficulties when
performing SGD on GCN

8

What’s the Problem in SGD?

• Issues come from high computation costs

• Suppose we desire to calculate a target
node’s loss with a 2-layer GCN

• To obtain its final representation, needs all
node embeddings in its 2-hop neighborhood

• 9 nodes’ embeddings needed
but only get 1 loss (utilization: low)

9

How to Make SGD Efficient for GCN?

Idea: subsample a smaller number of neighbors

• For example, GraphSAGE (NeurIPS’17) considers a
subset of neighbors per node

• But it still suffers from recursive neighborhood
expansion

10

How to Make SGD Efficient for GCN?

• VRGCN (ICML’18) subsamples neighbors and
adopts variance reduction for better estimation

• But it introduces extra memory requirement
(#node x #feature x #layer)

11

Improve the Embedding Utilization

• If considering all losses at one time (full-batch),
𝑮𝑪𝑵𝟐−𝒍𝒂𝒚𝒆𝒓 𝑨,𝑿 = 𝑨𝝈 𝑨𝑿𝑾 𝟎 𝑾(𝟏),

9 nodes’ embedding used and got 9 losses

• Embedding Utilization: optimal

• The key is to re-use nodes’ embeddings as many as
possible

• Idea: focus on dense parts of the graph

12

Graph Clustering Can Help!

Idea: apply graph clustering algorithm (e.g., METIS)
to identify dense subgraphs.

Our proposed method: Cluster-GCN

• Partition the graph into several clusters, remove
between-cluster edges

• Each subgraph is used as a mini-batch in SGD

• Embedding utilization is optimal because nodes’
neighbors stay within the cluster

13

Issue: Does Removing Edges Hurt?

• An example on CiteSeer
(a citation network with 3327 nodes)

• Even though 20% edges are removed, the accuracy
of GCN model remains similar

CiteSeer Random partitioning Graph partitioning

1 (no partitioning) 72.0 72.0

100 partitions 46.1 71.5
(~20% edges removed)

14

Issue: imbalanced label distribution

• However, nodes with similar labels are clustered
together

• Hence the label distribution within a cluster could be
different from the original data

• Leading to a biased SGD!

15

Selection of Multiple Clusters

We propose to randomly select multiple clusters as a
batch.

Two advantages:

• Balance label distribution within a batch

• Recover some missing edges between-cluster

16

Experiment Setup

• Cluster-GCN:
METIS as the graph clustering method

• GraphSAGE (NeurIPS’17):
samples a subset of neighbors per node

• VRGCN (ICML’18)
subsample neighbors + variance reduction

17

Datasets

• Reddit is the largest public data in previous papers

• To test scalability, we construct a new data Amazon2M
(2 million nodes) from Amazon co-purchasing product
networks

18

Comparisons on Medium-size Data

We consider a 3-layer GCN.

(X-axis: running time in sec, Y-axis: validation F1)

• GraphSAGE is slower due to sampling many neighbors

• VRGCN, Cluster-GCN finish the training in 1 minute for
those three data

PPI Reddit Amazon (GraphSAGE OOM)

19

Comparisons on #GCN-Layers

• Cluster-GCN is suitable for deeper GCN training

• The running time of VRGCN grows exponentially with
#GCN-layer, while Cluster-GCN grows linearly

20

Comparisons on Million-scale Graph

• Amazon2M: 2M nodes, 60M edges and only a single
GPU used

• VRGCN encounters memory issue while using more
GCN layers (due to VR technique)

• Cluster-GCN is scalable to million-scale graphs
with less and stable memory usage

21

Is Deep GCN Useful?

• Consider a 8-layer GCN on PPI
𝒁 = 𝐬𝐨𝐟𝐭𝐦𝐚𝐱 𝑨⋯𝝈 𝑨𝝈 𝑨𝑿𝑾 𝟎 𝐖 𝟏 ⋯𝑾 𝟕

• Unfortunately, existing methods fail to converge

• To facilitate training, we develop a useful
technique, “diagonal enhancement”

𝑿(𝒍+𝟏) = 𝝈(𝑨 + 𝝀𝐝𝐢𝐚𝐠 𝐀 𝑿 𝒍 𝑾(𝒍))

• Cluster-GCN finishes 8-layer GCN
training in only few minutes

(X-axis: running time, Y-axis: validation F1)

22

Cluster-GCN achieves SoTA

• With deeper & wider GCN, SoTA results achieved

• PPI: 5-layer GCN with 2048 hidden units

• Reddit: 4-layer GCN with 128 hidden units

23

Conclusions

In this work, we propose a simple and efficient
training algorithm for large and deep GCN.

• Scalable to million-scale graphs

• Allow training on deeper & wider GCN models

• Achieve state-of-the-art on public data

• TensorFlow codes available at
https://github.com/google-research/google-
research/tree/master/cluster_gcn

https://github.com/google-research/google-research/tree/master/cluster_gcn

