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Graph Convolutional Networks

GCN has been successfully applied to many
graph-based applications

For example, social networks, knowledge
graphs and biological networks

However, training a large-scale GCN ‘
remains challenging o
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https://medium.com/@sderymail/challenges-of-knowledge-graph-part-1-d9ffe9e35214
http://googlesystem.blogspot.com/2007/05/world-wide-web-as-seen-by-google.html

Background of GCN

Let's start with an example of citation networks
Node: paper, Edge: citation, Label: category
Goal: predict the unlabeled ones (grey nodes)
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Notations
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A GCN Update

In each GCN layer, node’s representation is
updated through the formula:
XD = gAxXOw®)

The formula incorporates neighborhood
information into new representations
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Operation like
averaging learnable weighted matrix: W



Better Representations

After GCN update, we hope to obtain better node
representations aware of local neighborhoods

The representations are useful for downstream
tasks




But Training GCN is not trivial

In standard neural networks (e.g., CNN),

loss function can be decomposed as g
Zliv=0 loss(xl-, yl) I
However, in GCN, loss on a hode not only ]

depends on itself but all its neighbors i '\m

This dependency brings difficulties when / \

performing SGD on GCN ] ]
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What's the Problem in SGD?

Issues come from high computation costs

Suppose we desire to calculate a target
node’s loss with a 2-layer GCN

;
To obtain its final representation, needs all |
node embeddings in its 2-hop neighborhood [
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How to Make SGD Efficient for GCN?

Idea: subsample a smaller number of neighbors

For example, GraphSAGE (NeurlPS'17) considers a
subset of neighbors per node

But it still suffers from recursive neighborhood
expansion
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2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information




How to Make SGD Efficient for GCN?

VRGCN (ICML'18) subsamples neighbors and
adopts variance reduction for better estimation

But it introduces extra memory requirement
(#node x #feature x #layer)



Improve the Embedding Utilization

If considering all losses at one time (full-batch),
GCN2_1ayer(A,X) = Ac(AXWO)W D),

9 nodes’ embedding used and got 9 losses

Embedding Utilization: optimal

The key is to re-use nodes’' embeddings as many as
possible

Idea: focus on dense parts of the graph



Graph Clustering Can Help!

Idea: apply graph clustering algorithm (e.g., METIS).@.; f\)%
to identify dense subgraphs. N

Our proposed method: Cluster-GCN g

Partition the graph into several clusters, remove
between-cluster edges

Each subgraph is used as a mini-batch in SGD

Embedding utilization is optimal because nodes’
neighbors stay within the cluster



Issue: Does Removing Edges Hurt?
An example on CiteSeer

(a citation network with 3327 nodes) .

Even though 20% edges are removed, the accuracy g
of GCN model remains similar

CiteSeer Random partitioning Graph partitioning
1 (no partitioning) 72.0 72.0
100 partitions 46.1 71.5
(~20% edges removed)




Issue: imbalanced label distribution

However, nodes with similar labels are clustered
together

Hence the label distribution within a cluster could be
different from the original data

Leading to a biased SGD!




Selection of Multiple Clusters

We propose to randomly select multiple clusters as a
batch.

Two advantages:
Balance label distribution within a batch
Recover some missing edges between-cluster
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Experiment Setup

Cluster-GCN:
METIS as the graph clustering method

GraphSAGE (NeurlPS'17):
samples a subset of neighbors per node

VRGCN (ICML'18)
subsample neighbors * variance reduction



Datasets

Reddit is the largest public data in previous papers

To test scalability, we construct a new data AmazonaM
(2 million nodes) from Amazon co-purchasing product

networks
Datasets Task #Nodes #Edges | #Labels | #Features
PPI multi-label 56,944 818,716 121 50
Reddit multi-class 232,965 | 11,606,919 41 602
Amazon multi-label 334,863 925,872 58 N/A
Amazon2M | multi-class | 2,449,029 | 61,859,140 47 100




Comparisons on Medium-size Data

We consider a 3-layer GCN.
(X-axis: running time in sec, Y-axis: validation F1)
GraphSAGE is slower due to sampling many neighbors

VRGCN, Cluster-GCN finish the training in 1 minute for
those three data
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Comparisons on #GCN-Layers

Cluster-GCN is suitable for deeper GCN training

The running time of VRGCN grows exponentially with
#GCN-layer, while Cluster-GCN grows linearly

Table 9: Comparisons of running time when using different
numbers of GCN layers. We use PPI and run both methods
for 200 epochs.

2-layer | 3-layer | 4-layer | 5-layer | 6-layer
Cluster-GCN 52.9s 82.5s | 109.4s | 137.8s | 157.3s
VRGCN 103.6s | 229.0s | 521.2s 1054s 1956s




Comparisons on Million-scale Graph

Amazon2M: 2M nodes, 60M edges and only a single
GPU used

VRGCN encounters memory issue while using more
GCN layers (due to VR technique)

Cluster-GCN is scalable to million-scale graphs
with less and stable memory usage

Table 8: Comparisons of running time, memory and testing accuracy (F1 score) for Amazon2M.

Time Memory Test F1 score
VRGCN | Cluster-GCN VRGCN | Cluster-GCN | VRGCN | Cluster-GCN
Amazon2M (2-layer) 337s 1223s | 7476 MB 2228 MB 89.03 89.00
Amazon2M (3-layer) 1961s 1523s | 11218 MB 2235 MB 90.21 90.21
Amazon2M (4-layer) N/A 2289s OOM 2241 MB N/A 90.41




Is Deep GCN Useful?

Consider a 8-layer GCN on PPI
Z = softmax(4 - o(Ac(AXW® )W) ... w(7)
Unfortunately, existing methods fail to converge

To facilitate training, we develop a useful

technique, “diagonal enhancement” o PPI (8-layer GCN)
XD = g((A + Adiag(A))xOw®)

Cluster-GCN finishes 8-layer GCN e

training in only few minutes
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Cluster-GCN achieves SoTA

With deeper & wider GCN, SoTA results achieved
PPI: 5-layer GCN with 2048 hidden units
Reddit: 4-layer GCN with 128 hidden units

Table 10: State-of-the-art performance of testing accuracy
reported in recent papers.

PPI Reddit
FastGCN [1] N/A | 93.7
GraphSAGE [5] | 61.2 | 95.4
VR-GCN [2] 97.8 96.3
GaAN [16] 98.71 | 96.36
GAT [14] 973 | N/A
GeniePath [10] | 98.5 | N/A
Cluster-GCN 99.36 | 96.60




Conclusions

In this work, we propose a simple and efficient
training algorithm for large and deep GCN.

Scalable to million-scale graphs
Allow training on deeper & wider GCN models

Achieve state-of-the-art on public data & @

TensorFlow codes available at

https://github.com/google-research/google-
research/tree/master/cluster_qgcn



https://github.com/google-research/google-research/tree/master/cluster_gcn

