Introduction

Nowadays linear models are a mature technique for classifica-
tion problems, but training on large-scale problems (e.g., doc-
ument classification, click-through-rate prediction) is still chal-
lenging.

For such scale (may be up to billions or more), distributed train-
ing can be useful, and L1 regularization is often adopted to re-
duce model size.

Challenges:

— Since ||w||; is non-differentiable, it is more difficult to develop
efficient optimization algorithms.

— Distributed training creates high communication costs be-
tween machines. Currently state-of-the-art methods on single
machine, such as coordinate descent method or its variants,
may not be suitable for distributed computation.

Currently, OWL-ON [?] is the most commonly used method for

distributed L1-regularized problems (e.g., it is the main linear
classifier in Spark MLIib).

In this work, we investigate why OWL-QN has been successful
and whether we can develop a better distributed optimization
method.

Optimization Problem

Given training data {(y;,x;)};_, v; € {—1,1}, ; € R". We de-

note the data matrix by

T

X =|x1,...,31| € RIX™.

We consider Ll-regularized logistic regression (LR) for the fol-
lowing problem

min - f(w) = [lwlly + L(w), (1)
where z
L(w) = Czizl log(1 + exp(—yiw” z;)).
OWL-QN is an extension of L-BFGS [?], which is a quasi-Newton

method for smooth optimization.

We start with introducing Newton method for smooth problems.
In each iteration, Newton method obtains the direction d by min-

imizing the second-order approximation of a smooth f:

min Y f(w)"d+ d"V f(w)d ~ fw +d) - fw)

which is equivalent to solving

Vif(w)d = -Vf(w) = d=—(V>f(w)) 'Vf(w).

(2)

~

Since V“ f(w) may be expensive to calculate, L-BFGS approxi-
mate the Newton direction by

d = —BV f(w), where B ~ (V>f(w)) 1.

B is obtained by using steps and gradient differences of the past
m iterations (usually m is small, e.g., 10 or 20)

s=1,...

W —s4+1 — Wk—s, vf(wk—s—l—l) — vf(wk—s)a o TTU.

Limited-memory Common-directions Method for Distributed L1-regularized Linear Classification

Wei-Lin Chiang (National Taiwan University), Yu-Sheng Li (National Taiwan University), Ching-pei Lee* (UW-Madison), Chih-Jen Lin (National Taiwan University)
{r06922166,b03902086, cjlin}t@csie.ntu.edu.tw, ching—-peilcs.wisc.edu”

From Smooth to L1-regularized Problem

e For smooth problems,

w is optimal <« Vf(w)=0.

When not optimal, V f(w) # 0 is often used to generate the di-
rection:

— Gradient descent: —V f(w)
— Newton method: —V?f(w) 'V f(w)

For L1-regularized problems,

wisoptimal < V' f(w)=0,

where V' f(w) is the projected gradient defined by
ViL(w)+1 w; >0, orw; =0,V,;L(w)+1 <0,

Vif(w) = V,L(w) -1 w; <0, orw; =0,V,;L(w) —1>0,
0 otherwise,

(3)
which indicates that w; can move along the direction -V’ f(w)
to decrease the function value.

We choose
A={j|V;f(w)#0}
to be the “active set,” the components that are allowed to change.

In each iteration, we obtain the active set 4, and then find a di-
rection on the orthant face where the projected gradient V* f(w)
lies.

Existing Method: OWL-QN

Now we aim to (approximately) minimize

min f(w + d d

i _O_)=Hw+_0_

|1 + L(w +

We consider Newton method on A, and (2) becomes
1

I&lin Vaif(w) da + idQViAL(’w)dA, (4)
A
which is equivalent to solving the linear system

ViaL(w)da = =V, f(w). (5)

The solution to (5) is
—(VHAL(w)) "'V f(w),

As solving (5) is expensive, we follow the idea of L-BFGS to find
B~ (V% ,L(w))™! and calculate d4 = —BVY, f(w). (6)

Instead of (6), OWL-QN uses B ~ V*L(w) ! and calculate
ds=—(BV f(w))a~ —(VL(w)™ ") aaVyf(w).

The main complexity of OWL-QN per iteration is only 2 data

passes (one function and one projected gradient evaluation).

Note that Newton direction is much more expensive. It can cost
up to

O(n x data passes), n = #features.

This explains why OWL-QN is practically viable.

C

ommon-directions Method for L1-regularized Problems

Instead of minimizing (4) over d 4 € RI!, we extend recent works [??] for smooth optimization
by restricting the direction to be a linear combination of only some vectors. Then (4) becomes

VS (@) (Pt)a + 5 (PH).4)T V54 L(w)(PH) 1

min
+

where P € R™*™ contains m vectors as its columns and t € R™ 1is the coefficient vector
corresponding to columns of P.

Like OWL-QN, the columns of P are chosen to be past projected gradients or step difference

P = [vpf(wk)avpf(wk—l)7 o, W — W1, W1 — Wg—2, .. } '

The minimization problem is equivalent to solving the m x m linear system
(Pa:)" VaaL(w)(Pa)t = =(Pa.)" Vi f(w),

which can be done in O(m?).

(7)

Because of the special structure of linear classification, we have
V2L(w) = CX' DX, (8)

where D,, is a diagonal matrix (details not shown here).

By (8), we have
VaaLl(w) = CX! 4Dy X. 4,

and thus in (7)

(PA,:)TV?AXAL(TU)(PA,:) — C(X:,APA,:)TD'w (X.,aPa,.). 9)

However, obtaining X. 4 P4 . in (9) costs m data passes, which is expensive.
If the active sets in the past m iterations are similar (details not explained), then

X:,APA,, ~ XP.

Therefore, we can approximate X. 4 P4 . by X P in (9), and hence (7) becomes

C(XP)' Doy(XP)t = —(Pa.)" Vi1 f(w). (10)

Note that only one column of P is updated per iteration,

[pl o pm] — [p2 ” °pm—|—1]7

hence it only takes one data pass to calculate Xp,,. ; and maintain X P:

X[p2”°pm—|—1]: [X[p2pm] Xpm—l—l}'
existing new

Our proposed method using (10) (more details in the implementation below) is referred to as
“L-Comm,” which is an approximation of “L-Comm-Face” (using (7)).

Comparisons on computational complexity per iteration:

L-Comm: 3 data passes; L-Comm-Face: 2 4+ m data passes; OWL-QN: 2 data passes.

If L-Comm gets better directions, the number of iterations may be smaller.

Implementation of our Proposed Method

1
2

3:

. Initialize w + wy

: while not optimal do

Compute V' f(w) by (3)

Solve the linear system (10)

Let the direction be d = Pt

Align d with —V?* f(w)

Conduct line search on direction d and update w
Update P and X P

Distributed Implementation

e We consider a master-slave framework, and Open MPI [?] is used for communication
between machines.

e The data set X is split across K machines in an instance-wise manner: J,., r =1,..., K
partition {1,...,[}, and the r-th machine stores X, = {(y;, ;) }icJ,.-

e The model w and the projected gradient V" f(w) are made available to all K machines.

The main communication costs occur in the following two places:
1.

VL(w) =P VL (w), L.(w)=C>» log(l+exp(—yw’x;)).

1€J,

where @ is the allreduce operation that sums up values from machines and broadcasts
the result back (see Figure 1 for an illustration). The communication cost is O(n).

2. After obtaining d; at machine r, we need an allgather operation to make the whole
direction d available at every machine. The communication cost is O(n/K).

Comparisons on the Number of lterations

Master
A B O

VLi(w) VLy(w) VLx(w)
- B @
Data X Xo XK

e

X1 Xo

XK

Figure 1: Gradient calculation

e For OWL-QN, L-COMM, and L-COMM-FACE, we all use information from the past 10 iterations. For NEWTON,we run 50 CG

steps at each iteration.

o The figures are plotted with relative function difference versus #iterations. The three horizontal lines indicate when OWL-QN

meets the stoppping conditions with different criteria.

—u— OWLQN
L-COMM-FACE

—u— OWLQN
L-COMM-FACE

—e— L-COMM

—a— NEWTON g 10%;

—o— L-COMM
—&— NEWTON

1]

10 —%— OWLQN 1024 # —%— OWLQN 10141 —#— OWLQN 100 —s— OWLQN 100
100 L-COMM-FACE L-COMM-FACE 9 \' L-COMM-FACE g L-COMM-FACE B
3 —e— L-COMM S 1014 —e— L-COMM 5 10°] \ —e— L-COMM g 10 —e— L-COMM g 107
2 1071 —&— NEWTON —&— NEWTON g —&— NEWTON L 1072/ —&— NEWTON 10-2
5 2 - — i - —

510 10-
"
c
3
L

10—4_

10—5_

[
9
|

T e N

100 150 200 0
lteration

yahoojp

0 50 100 150

0 200 400 600 800 0 50 100 150 0 50
lteration '

lteration

rcv news20 real-sim

Comparisons on the Number of lterations and Timing in Distrib

250 500 750 1000 1250 0
lteration

yahookr

500 1000 1500 2000
lteration

uted Environments

e We compare OWL-QN and L-COMM with 32 machines on AWS. The figures are plotted with relative function difference versus

#iterations (upper) and running time in seconds (lower). More larger data sets are considered in this experiment.

—%— OWLON § \
—9— L-COMM |

—s#— OWLQN 1072 4 \\
—— L-COMM

—%— OWLQN
—— L-COMM |

—%— OWLQN |
—4— L-COMM _| @
-3 |

—%— OWLQN
—4— L-COMM

—%— OWLQN
—4— L-COMM

lative Function Difference

Relative Function Difference
Relative Function Difference
Relative Function Differenc

Relative Function Difference

Re

—%— OWLQN

—%— OWLQON 1072 5 \\ —%— OWLQN

—%— OWLQN _
—4— |-COMM _]
-3

—%— OWLQN
—— L-COMM

—%— OWLQN
—— L-COMM

ative Function Difference

Relative Function Difference
Relative Function Difference
Relative Function Differenc

Relative Function Difference

Rel

00 4000 6000 8000
Training time (s)

url yahookr KDD2010-b kdd2012
Conclusions

200 300 400 500
Training time (s)

400 600 800 1000
Training time (s)

1000 1500 2000
Training time (s)

criteo webspam

e In this work, we identify possible issues of OWL-QN, and present a method that improves the search directions.

Through experiments, our method is shown to be more efficient than OWL-QN in distributed environments.

e The code is available in distributed LIBLINEAR.
(https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-1ibli

5
e

near/)

