
Limited-memory Common-directions Method for Distributed L1-regularized Linear Classification
Wei-Lin Chiang (National Taiwan University), Yu-Sheng Li (National Taiwan University), Ching-pei Lee∗ (UW-Madison), Chih-Jen Lin (National Taiwan University)

{r06922166,b03902086,cjlin}@csie.ntu.edu.tw,ching-pei@cs.wisc.edu∗

Introduction
• Nowadays linear models are a mature technique for classifica-

tion problems, but training on large-scale problems (e.g., doc-
ument classification, click-through-rate prediction) is still chal-
lenging.

• For such scale (may be up to billions or more), distributed train-
ing can be useful, and L1 regularization is often adopted to re-
duce model size.

• Challenges:

– Since ‖w‖1 is non-differentiable, it is more difficult to develop
efficient optimization algorithms.

– Distributed training creates high communication costs be-
tween machines. Currently state-of-the-art methods on single
machine, such as coordinate descent method or its variants,
may not be suitable for distributed computation.

• Currently, OWL-QN [?] is the most commonly used method for
distributed L1-regularized problems (e.g., it is the main linear
classifier in Spark MLlib).

• In this work, we investigate why OWL-QN has been successful
and whether we can develop a better distributed optimization
method.

Optimization Problem
• Given training data {(yi,xi)}li=1, yi ∈ {−1, 1}, xi ∈ Rn. We de-

note the data matrix by

X =
[
x1, . . . ,xl

]T ∈ Rl×n.

• We consider L1-regularized logistic regression (LR) for the fol-
lowing problem

min
w∈Rn

f(w) ≡ ‖w‖1 + L(w), (1)

where
L(w) ≡ C

∑l

i=1
log(1 + exp(−yiwTxi)).

• OWL-QN is an extension of L-BFGS [?], which is a quasi-Newton
method for smooth optimization.

• We start with introducing Newton method for smooth problems.
In each iteration, Newton method obtains the direction d by min-
imizing the second-order approximation of a smooth f̃ :

min
d

∇f̃(w)Td +
1

2
dT∇2f̃(w)d ≈ f̃(w + d)− f̃(w), (2)

which is equivalent to solving

∇2f̃(w)d = −∇f̃(w) ⇒ d = −(∇2f̃(w))−1∇f̃(w).

• Since ∇2f̃(w) may be expensive to calculate, L-BFGS approxi-
mate the Newton direction by

d = −B∇f̃(w), where B ≈ (∇2f̃(w))−1.

• B is obtained by using steps and gradient differences of the past
m iterations (usually m is small, e.g., 10 or 20)

wk−s+1 −wk−s,∇f̃(wk−s+1)−∇f̃(wk−s), s = 1, . . . ,m.

From Smooth to L1-regularized Problem
• For smooth problems,

w is optimal ⇔ ∇f(w) = 0.

• When not optimal, ∇f(w) 6= 0 is often used to generate the di-
rection:

– Gradient descent: −∇f(w)

– Newton method: −∇2f(w)−1∇f(w)

• For L1-regularized problems,

w is optimal ⇔ ∇Pf(w) = 0,

where ∇Pf(w) is the projected gradient defined by

∇P
jf(w) ≡


∇jL(w) + 1 wj > 0, or wj = 0,∇jL(w) + 1 < 0,

∇jL(w)− 1 wj < 0, or wj = 0,∇jL(w)− 1 > 0,

0 otherwise,
(3)

which indicates that wj can move along the direction −∇P
jf(w)

to decrease the function value.

• We choose
A ≡ {j | ∇P

jf(w) 6= 0}

to be the “active set,” the components that are allowed to change.

• In each iteration, we obtain the active set A, and then find a di-
rection on the orthant face where the projected gradient∇Pf(w)
lies.

Existing Method: OWL-QN
• Now we aim to (approximately) minimize

min
dA

f(w +

[
dA

0

]
) = ‖w +

[
dA

0

]
‖1 + L(w +

[
dA

0

]
).

• We consider Newton method on A, and (2) becomes

min
dA

∇P
Af(w)TdA +

1

2
dT
A∇2

AAL(w)dA, (4)

which is equivalent to solving the linear system

∇2
AAL(w)dA = −∇P

Af(w). (5)

• The solution to (5) is

−(∇2
AAL(w))−1∇P

Af(w).

• As solving (5) is expensive, we follow the idea of L-BFGS to find

B̄ ≈ (∇2
AAL(w))−1 and calculate dA = −B̄∇P

Af(w). (6)

• Instead of (6), OWL-QN uses B ≈ ∇2L(w)−1 and calculate

dA = −(B∇Pf(w))A ≈ −(∇2L(w)−1)AA∇P
Af(w).

• The main complexity of OWL-QN per iteration is only 2 data
passes (one function and one projected gradient evaluation).

• Note that Newton direction is much more expensive. It can cost
up to

O(n× data passes), n = #features.

• This explains why OWL-QN is practically viable.

Common-directions Method for L1-regularized Problems
• Instead of minimizing (4) over dA ∈ R|A|, we extend recent works [??] for smooth optimization

by restricting the direction to be a linear combination of only some vectors. Then (4) becomes

min
t

∇P
Af(w)T (P t)A +

1

2
((P t)A)T∇2

AAL(w)(P t)A,

where P ∈ R
n×m contains m vectors as its columns and t ∈ R

m is the coefficient vector
corresponding to columns of P .

• Like OWL-QN, the columns of P are chosen to be past projected gradients or step difference

P =
[
∇Pf(wk),∇Pf(wk−1), . . . ,wk −wk−1,wk−1 −wk−2, . . .

]
.

• The minimization problem is equivalent to solving the m×m linear system

(PA,:)
T∇2

AAL(w)(PA,:)t = −(PA,:)
T∇P

Af(w), (7)

which can be done in O(m3).

• Because of the special structure of linear classification, we have

∇2L(w) = CXTDwX, (8)

where Dw is a diagonal matrix (details not shown here).

• By (8), we have
∇2

AAL(w) = CXT
:,ADwX:,A,

and thus in (7)
(PA,:)

T∇2
AAL(w)(PA,:) = C(X:,APA,:)

TDw(X:,APA,:). (9)

• However, obtaining X:,APA,: in (9) costs m data passes, which is expensive.

• If the active sets in the past m iterations are similar (details not explained), then

X:,APA,: ≈ XP .

• Therefore, we can approximate X:,APA,: by XP in (9), and hence (7) becomes

C(XP)TDw(XP)t = −(PA,:)
T∇P

Af(w). (10)

• Note that only one column of P is updated per iteration,

[p1 · · ·pm]→ [p2 · · ·pm+1],

hence it only takes one data pass to calculate Xpm+1 and maintain XP :

X[p2 · · ·pm+1] =
[
X[p2 · · ·pm]︸ ︷︷ ︸

existing

Xpm+1︸ ︷︷ ︸
new

]
.

• Our proposed method using (10) (more details in the implementation below) is referred to as
“L-Comm,” which is an approximation of “L-Comm-Face” (using (7)).

• Comparisons on computational complexity per iteration:

L-Comm: 3 data passes; L-Comm-Face: 2 + m data passes; OWL-QN: 2 data passes.

• If L-Comm gets better directions, the number of iterations may be smaller.

Implementation of our Proposed Method
1: Initialize w ← w0

2: while not optimal do
3: Compute∇Pf(w) by (3)
4: Solve the linear system (10)
5: Let the direction be d = P t
6: Align d with −∇Pf(w)
7: Conduct line search on direction d and update w
8: Update P and XP

Distributed Implementation
• We consider a master-slave framework, and Open MPI [?] is used for communication

between machines.

• The data set X is split across K machines in an instance-wise manner: Jr, r = 1, . . . ,K
partition {1, . . . , l}, and the r-th machine stores Xr ≡ {(yi,xi)}i∈Jr

.

• The model w and the projected gradient∇Pf(w) are made available to all K machines.

The main communication costs occur in the following two places:
1.

∇L(w) =

K⊕
r=1

∇Lr(w), Lr(w) ≡ C
∑
i∈Jr

log(1 + exp(−yiwTxi)),

where
⊕

is the allreduce operation that sums up values from machines and broadcasts
the result back (see Figure 1 for an illustration). The communication cost is O(n).

2. After obtaining dJr
at machine r, we need an allgather operation to make the whole

direction d available at every machine. The communication cost is O(n/K). Figure 1: Gradient calculation

Comparisons on the Number of Iterations
• For OWL-QN, L-COMM, and L-COMM-FACE, we all use information from the past 10 iterations. For NEWTON,we run 50 CG

steps at each iteration.

• The figures are plotted with relative function difference versus #iterations. The three horizontal lines indicate when OWL-QN
meets the stoppping conditions with different criteria.

rcv1 news20 real-sim yahoojp yahookr url

Comparisons on the Number of Iterations and Timing in Distributed Environments
• We compare OWL-QN and L-COMM with 32 machines on AWS. The figures are plotted with relative function difference versus

#iterations (upper) and running time in seconds (lower). More larger data sets are considered in this experiment.

url yahookr KDD2010-b kdd2012 criteo webspam

Conclusions
• In this work, we identify possible issues of OWL-QN, and present a method that improves the search directions.

Through experiments, our method is shown to be more efficient than OWL-QN in distributed environments.

• The code is available in distributed LIBLINEAR.
(https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/)

