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Linear classification

Nowadays linear models has become a mature
technique for classification problems

However, training large-scale problems (e.g.,
document classification, click-through-rate
prediction) is still challenging

For such scale (may be up to billions or more),
distributed training can be useful, and L1
regularization is often adopted to reduce model size
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Introduction

L1-regularized logistic regression (LR)

Given l : #instances, n: #features
Training data {(yi , x i)}li=1, yi ∈ {−1, 1}, x i ∈ Rn

We consider L1-regularized LR

min
w∈Rn

f (w),

where

f (w) ≡ ‖w‖1 + L(w),

L(w) ≡ C
∑l

i=1
log(1 + e−yiw

T
x i ) is C × losses

‖w‖1: avoid overfitting and achieve sparse models
C : regularization parameter
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Introduction

An example of sparsity through L1-norm

We run LIBLINEAR (Fan et al., 2008), a popular
linear-classification package, on a document classification
data, news20

L2-regularized LR

$./train -s 0 -c 1024 news20.train

Nonzeros in model w : 93% (1258732/1355191)

L1-regularized LR

$./train -s 6 -c 1024 news20.train

Nonzeros in model w : 3.6% (48596/1355191)

Similar accuracy on test data (96.7% vs. 96.6%)
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Introduction

Challenges

‖w‖1 is not differentiable, so it is more difficult to
develop efficient optimization algorithms

For distributed training scenario, some
state-of-the-art methods on single machine may not
be easily deployed
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Introduction

Current status

Currently, OWL-QN (Andrew and Gao, 2007), an
extension of a quasi-Newton method (L-BFGS, Liu
and Nocedal 1989), is the most commonly used
distributed method

For example, OWL-QN is the main linear classifier
in Spark MLlib (Meng et al., 2016)

In this work, we investigate why OWL-QN has been
successful and whether we can develop a better
distributed training method
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Our proposed method

Outline

1 Introduction

2 Our proposed method

3 Experiments and conclusions

Wei-Lin Chiang (National Taiwan Univ.) 9 / 27



Our proposed method

Difference between smooth problems and
L1 problems

For smooth problem f , we have

w is optimal⇔ ∇f (w) = 0

For the L1-regularized problem,

w is optimal⇔ ∇Pf (w) = 0,

where ∇Pf (w) is the projected gradient

When not optimal, ∇Pf (w) is used to generate a
direction (e.g., projected gradient descent method)
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Our proposed method

The active set

Following the projected gradient direction, the set
defined by

A ≡ {j | ∇P
j f (w) 6= 0} (1)

can be seen as the components that are allowed to
change

That is, we want to obtain a direction under the
subspace defined by A

The optimization procedure becomes to iteratively
I obtain the active set A, and
I find a direction on the subspace defined by A
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Our proposed method

Common-directions method

To obtain a better direction, we consider the
second-order Taylor approximation on A

f (w +

[
dA

0

]
)− f (w)

≈∇P
Af (w)TdA +

1

2
d
T
A∇2

AAL(w)dA (2)

It is expensive to precisely solve (2)

We extend a recent work (Lee et al., 2017) for
smooth optimization by restricting the direction to
be a linear combination of only some vectors
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Our proposed method

Common-directions method (Cont’d)

The second-order approximation becomes

min
t

∇P
Af (w)T (Pt)A +

1

2
((Pt)A)T∇2

AAL(w)(Pt)A

P ∈ Rn×m is the matrix containing m vectors as its
columns (typically m < 30)
Since d = Pt, we now minimize over t, coefficients
corresponding to P ’s columns

Columns of P can be chosen as some past projected
gradients and steps

P = [∇Pf (w k),∇Pf (w k−1), . . . ,

w k −w k−1,w k−1 −w k−2, . . . ]
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Our proposed method

Common-directions method (Cont’d)

To obtain t, it is equivalent to solving the linear
system

(PA,:)
T∇2

AAL(w)(PA,:)t = −(PA,:)
T∇P

Af (w) (3)

Note that we have P ∈ Rn×m, where

n : #features� m : #vectors

If
(PA,:)

T∇2
AAL(w)(PA,:) ∈ Rm×m (4)

is available, solving (3) is extremely cheap O(m3)
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Our proposed method

Common-directions method (Cont’d)

But the computation cost of (4) is indeed

m ×O(#nnz of X ),

where X =

xT
1
...
xT
l

 is the data matrix

#nnz: number of non-zeros, typically m < 30

It is very expensive. In contrast, it only takes
O(#nnz of X ) to obtain ∇Pf (w)
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Our proposed method

Common-directions method (Cont’d)

We want to approximate the left-hand-side matrix

(PA,:)
T∇2

AAL(w)(PA,:)

Roughly speaking, the idea is to check the active
sets during the past m iterations

Then the cost of calculating (4) can be significantly
reduced from

O(m ×#nnz of X )

to
O(#nnz of X )
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Our proposed method

L-Comm: Limited-memory common
directions method

Our method is referred to as “L-Comm”
(limited-memory common directions)

Limited-memory: we use “m” vectors for the
direction

Common directions: we consider the direction to be
linear combination of columns of P
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Our proposed method

Complexity

In distributed environments,

cost per iteration = computational cost

+ communicational cost

Computational complexity per iteration:

OWL-QN: 2×O(#nnz of X )

L-Comm: 3×O(#nnz of X )

If L-Comm gets a better direction, the number of
iterations may be smaller, which leads to less total
training time
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Our proposed method

Complexity (Cont’d)

Communicational complexity per iteration:

OWL-QN: O(n)

L-Comm: O(n)

O(n) comes from, for example, aggregating vectors
from all nodes to form ∇Pf (w) ∈ Rn

Their communication costs are similar

In summary, L-Comm may be faster because of
I same communicational cost per iteration, and
I fewer iterations by better directions
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Experiments and conclusions

Data sets

We show six data sets, some with large #instances and
#features. All of them are sparse matrices (containing
lots of zeros).

Data set #instances #features sparsity
yahookr 460,554 3,052,939 0.0001113
avazu-site 25,832,830 999,962 0.0000150
kdd2010-b 19,264,097 29,890,096 0.0000010
criteo 45,840,617 1,000,000 0.0000390
kdd2012 149,639,105 54,686,452 0.0000002
webspam 350,000 16,609,143 0.0002244
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Experiments and conclusions

Experimental settings

We compare OWL-QN and L-Comm by using 32
machines on AWS

Open MPI (Gabriel et al., 2004) is used for the
communication between machines

Note that for machine learning, it is not necessary
to solve the optimization problem too accurately

So we also show some horizontal lines to indicate
different stopping conditions
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Experiments and conclusions

Results

y-axis: relative distance to the optimal value (log-scale)
x-axis: #iterations (upper), training time (lower)

(a) yahookr (b) kdd2010-b (c) kdd2012
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Experiments and conclusions

Results (Cont’d)

y-axis: relative distance to the optimal value (log-scale)
x-axis: #iterations (upper), training time (lower)

(a) avazu-site (b) criteo (c) webspam
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Experiments and conclusions

Observations

L-Comm always needs fewer iterations

Although being more expensive per iteration,
L-Comm is generally faster due to a smaller number
of iterations

L-Comm is not significantly superior to OWL-QN on
criteo and avazu-site. Their #features are relatively
small, so computational cost is more dominant
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Experiments and conclusions

Conclusions

In this work, we study L1-regularized linear
classification in distributed environments

By improving the search direction, our proposed
method is shown to be faster than OWL-QN in
distributed environments

The code is available in distributed LIBLINEAR
(https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/distributed-liblinear/)
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