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R
linear classification

@ Nowadays linear models has become a mature
technique for classification problems

@ However, training large-scale problems (e.g.,
document classification, click-through-rate
prediction) is still challenging

@ For such scale (may be up to billions or more),
distributed training can be useful, and L1
regularization is often adopted to reduce model size
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L1-regularized logistic regression (LR)
@ Given [: #instances, n: #features

e Training data {(y;,x;)}/_;, vi € {~1,1}, x; € R”
@ We consider L1-regularized LR

min  f(w),
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L1-regularized logistic regression (LR)

@ Given [: #instances, n: #features
e Training data {(y;,x;)}/_;, vi € {~1,1}, x; € R”
@ We consider L1-regularized LR

min  f(w),

where
f(w) = |lwll + L(w),
/ T
L(w) = CZ__l log(1+ ™™ *) is C x losses

@ ||lwl|1: avoid overfitting and achieve sparse models
e C: regularization parameter
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An example of sparsity through L1-norm

We run LIBLINEAR (Fan et al., 2008), a popular
linear-classification package, on a document classification
data, news20

@ L2-regularized LR
$./train -s 0 -c 1024 news20.train
Nonzeros in model w: 93% (1258732/1355191)
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An example of sparsity through L1-norm

We run LIBLINEAR (Fan et al., 2008), a popular
linear-classification package, on a document classification
data, news20

@ L2-regularized LR
$./train -s 0 -c 1024 news20.train
Nonzeros in model w: 93% (1258732/1355191)
o L1-regularized LR
$./train -s 6 -c 1024 news20.train
Nonzeros in model w: 3.6% (48596,/1355191)
@ Similar accuracy on test data (96.7% vs. 96.6%)
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Challenges

@ ||w||; is not differentiable, so it is more difficult to
develop efficient optimization algorithms

@ For distributed training scenario, some
state-of-the-art methods on single machine may not
be easily deployed
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Current status

e Currently, OWL-QN (Andrew and Gao, 2007), an
extension of a quasi-Newton method (L-BFGS, Liu
and Nocedal 1989), is the most commonly used
distributed method

@ For example, OWL-QN is the main linear classifier
in Spark MLIib (Meng et al., 2016)

@ In this work, we investigate why OWL-QN has been
successful and whether we can develop a better
distributed training method
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Difference between smooth problems and
L1 problems
@ For smooth problem f, we have
w is optimal < Vf(w) =0
@ For the L1-regularized problem,
w is optimal & VP f(w) =0,

where VP f(w) is the projected gradient
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Our proposed method

Difference between smooth problems and
L1 problems
@ For smooth problem f, we have
w is optimal < Vf(w) =0
@ For the L1-regularized problem,
w is optimal & VP f(w) =0,

where VP f(w) is the projected gradient

e When not optimal, VPf(w) is used to generate a
direction (e.g., projected gradient descent method)
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The active set

@ Following the projected gradient direction, the set

defined by

A={j| V]f(w)#0} (1)
can be seen as the components that are allowed to
change

@ That is, we want to obtain a direction under the
subspace defined by A
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The active set

@ Following the projected gradient direction, the set

defined by

A={j| V]f(w)#0} (1)
can be seen as the components that are allowed to
change

@ That is, we want to obtain a direction under the
subspace defined by A
@ The optimization procedure becomes to iteratively

» obtain the active set A, and
» find a direction on the subspace defined by A
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Our proposed method

Common-directions method

@ To obtain a better direction, we consider the
second-order Taylor approximation on A

fw+ |G - i)

1
AV (W) dat SdaVipl(w)da  (2)

@ It is expensive to precisely solve (2)
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Common-directions method

@ To obtain a better direction, we consider the
second-order Taylor approximation on A

fw+ |G - i)

1
AV (W) dat SdaVipl(w)da  (2)

@ It is expensive to precisely solve (2)

@ We extend a recent work (Lee et al., 2017) for
smooth optimization by restricting the direction to
be a linear combination of only some vectors
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Common-directions method (Cont'd)
@ The second-order approximation becomes
min Vaf (w)' (Pt)a + ((Pt) )" Vaal(w)(Pt)a

P € R™™ is the matrix containing m vectors as its

columns (typically m < 30)
@ Since d = Pt, we now minimize over t, coefficients

corresponding to P’s columns
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Common-directions method (Cont'd)
@ The second-order approximation becomes
min Vaf (w)' (Pt)a + ((Pt) )" Vaal(w)(Pt)a

P € R™™ is the matrix containing m vectors as its

columns (typically m < 30)
@ Since d = Pt, we now minimize over t, coefficients

corresponding to P’s columns
@ Columns of P can be chosen as some past projected

gradients and steps

P=[V f(wy), VPf(wi1),...,
Wi — Wg_1,Wi_1— Wk, .. ]
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Common-directions method (Cont'd)

@ To obtain t, it is equivalent to solving the linear
system

(Pa:) Vaal(w)(Pa:)t = —(Pa;) " Vaf(w) (3)
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Common-directions method (Cont'd)

@ To obtain t, it is equivalent to solving the linear
system

(Pa:) Vaal(w)(Pa:)t = —(Pa;) " Vaf(w) (3)

@ Note that we have P € R™"™ where
n : #features > m : #vectors

o If
(Pa:) Vaal(w)(Pa) € R™" (4)

is available, solving (3) is extremely cheap O(m?)
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Our proposed method

Common-directions method (Cont'd)

@ But the computation cost of (4) is indeed

m x O(#nnz of X),

.
X1

where X = | : | is the data matrix
x/
#nnz: number of non-zeros, typically m < 30
@ |t is very expensive. In contrast, it only takes
O(#nnz of X) to obtain VPf(w)
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Our proposed method

Common-directions method (Cont'd)

@ We want to approximate the left-hand-side matrix
(Pa.) " Vaal(w)(Pa,)

@ Roughly speaking, the idea is to check the active
sets during the past m iterations

@ Then the cost of calculating (4) can be significantly
reduced from

O(m x #nnz of X)

to

O(#nnz of X)
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Our proposed method

L-Comm: Limited-memory common
directions method

@ Our method is referred to as “L-Comm”
(limited-memory common directions)

@ Limited-memory: we use “m" vectors for the
direction

@ Common directions: we consider the direction to be
linear combination of columns of P
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Complexity

@ In distributed environments,

cost per iteration = computational cost
-+ communicational cost

o Computational complexity per iteration:

OWL-QN: 2 x O(#nnz of X)
L-Comm: 3 x O(#nnz of X)

o If L-Comm gets a better direction, the number of
iterations may be smaller, which leads to less total
training time
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Our proposed method

Complexity (Cont'd)

@ Communicational complexity per iteration:

OWL-QN: O(n)
L-Comm: O(n)

@ O(n) comes from, for example, aggregating vectors
from all nodes to form VPf(w) € R”

@ Their communication costs are similar
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Complexity (Cont'd)

@ Communicational complexity per iteration:

OWL-QN: O(n)
L-Comm: O(n)

@ O(n) comes from, for example, aggregating vectors
from all nodes to form VPf(w) € R”

@ Their communication costs are similar
@ In summary, L-Comm may be faster because of

» same communicational cost per iteration, and
» fewer iterations by better directions
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Experiments and conclusions
Outli

© Experiments and conclusions
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Data sets

We show six data sets, some with large #instances and
#features. All of them are sparse matrices (containing

lots of zeros).

Data set #instances | #features sparsity
yahookr 460,554 | 3,052,939 | 0.0001113
avazu-site | 25,832,830 999,962 | 0.0000150
kdd2010-b | 19,264,097 | 29,890,096 | 0.0000010
criteo 45,840,617 | 1,000,000 | 0.0000390
kdd2012 | 149,639,105 | 54,686,452 | 0.0000002
webspam 350,000 | 16,609,143 | 0.0002244
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Experimental settings

@ We compare OWL-QN and L-Comm by using 32
machines on AWS

@ Open MPI (Gabriel et al., 2004) is used for the
communication between machines
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Experimental settings

@ We compare OWL-QN and L-Comm by using 32
machines on AWS

@ Open MPI (Gabriel et al., 2004) is used for the
communication between machines

@ Note that for machine learning, it is not necessary
to solve the optimization problem too accurately

@ So we also show some horizontal lines to indicate
different stopping conditions
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Experiments and conclusions

Results

y-axis: relative distance to the optimal value (log-scale)
x-axis: #iterations (upper), training time (lower)
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Experiments and conclusions

Results (Cont'd)

y-axis: relative distance to the optimal value (log-scale)
x-axis: #iterations (upper), training time (lower)
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Observations

@ L-Comm always needs fewer iterations

@ Although being more expensive per iteration,
L-Comm is generally faster due to a smaller number
of iterations

@ L-Comm is not significantly superior to OWL-QN on
criteo and avazu-site. Their #features are relatively
small, so computational cost is more dominant
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Conclusions

@ In this work, we study L1-regularized linear
classification in distributed environments

@ By improving the search direction, our proposed
method is shown to be faster than OWL-QN in
distributed environments

@ The code is available in distributed LIBLINEAR
(https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/distributed-liblinear/)
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